Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.461
Filtrar
1.
Neuron ; 112(8): 1205-1207, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38608706

RESUMO

Removal of toxic debris that can hinder brain function is performed primarily by microglia, the brain's professional phagocytes. A recent study in Cell1 identified that viral response interferons are required for priming microglia, ensuring competent phagocytosis and proper circuit wiring.


Assuntos
Interferons , Microglia , Microglia/fisiologia , Fagocitose/fisiologia , Encéfalo
2.
Cell Biochem Funct ; 42(2): e3972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500392

RESUMO

Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.


Assuntos
60574 , Fagocitose , Fagocitose/fisiologia , Macrófagos/metabolismo , Apoptose , Vitaminas/farmacologia , Vitaminas/metabolismo
3.
Methods Mol Biol ; 2761: 231-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427240

RESUMO

Microglia are scavengers of the brain environment that clear dead cells, debris, and microbes. In Alzheimer's disease, microglia get activated to phagocytose damaged neurons, extracellular Amyoid-ß, and Tau deposits. Several Tau internalization mechanisms of microglia have been studied which include phagocytosis, pinocytosis, and receptor-mediated endocytosis. In this chapter, we have visualized microglial phagocytic structures that are actin-rich cup-like extensions, which surrounds extracellular Tau species by wide-field fluorescence and confocal microscopy. We have shown the association of filamentous actin in Tau phagocytosis along the assembly of LC-3 molecules to phagosomes. The 3-dimensional, orthogonal and gallery wise representation of these phagocytic structures provides an overview of the phagocytic mechanism of extracellular Tau by microglia.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Microglia/metabolismo , Actinas , Fagocitose/fisiologia , Transporte Biológico , Peptídeos beta-Amiloides/metabolismo
4.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359833

RESUMO

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Assuntos
Actinas , Glicocálix , Animais , Humanos , Camundongos , Glicocálix/metabolismo , Actinas/metabolismo , Fagócitos , Fagocitose/fisiologia , Ligantes , Apoptose/fisiologia , Fosfatidilserinas/metabolismo
5.
Chem Commun (Camb) ; 60(21): 2930-2933, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372418

RESUMO

Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.


Assuntos
Interleucina-10 , Macrófagos , Açúcares Ácidos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338958

RESUMO

The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro. Circadian dependency and the involvement of CD36 were analyzed in PMG isolated from control mice and CD36-/- mice and by RNA interference targeting Per-2. In vivo investigations, including phagocytosis, vasospasm, microglia activation and spatial memory, were conducted in an SAH model using control and CD36-/- mice at different zeitgeber times (ZT). In vitro, the surface expression of CD36 and its dependency on CO and phagocytosis occurred with changed circadian gene expression. CD36-/- PMG exhibited altered circadian gene expression, phagocytosis and impaired responsiveness to CO. In vivo, control mice with SAH demonstrated circadian dependency in microglia activation, erythrophagocytosis and CO-mediated protection at ZT2, in contrast to CD36-/- mice. Our study indicates that circadian rhythmicity modulates microglial activation and subsequent CD36-dependent phagocytosis. CO altered circadian-dependent neuroprotection and CD36 induction, determining the functional outcome in a hemorrhagic stroke model. This study emphasizes how circadian rhythmicity influences neuronal damage after neurovascular events.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Linfo-Histiocitose Hemofagocítica , Hemorragia Subaracnóidea , Camundongos , Animais , Microglia/metabolismo , Monóxido de Carbono/metabolismo , Neuroproteção , Fagocitose/fisiologia , Hemorragia Subaracnóidea/metabolismo
7.
Commun Biol ; 7(1): 129, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272969

RESUMO

Neudesin, originally identified as a neurotrophic factor, has primarily been studied for its neural functions despite its widespread expression. Using 8-week-old neudesin knockout mice, we elucidated the role of neudesin in the spleen. The absence of neudesin caused mild splenomegaly, shortened lifespan of circulating erythrocytes, and abnormal recovery from phenylhydrazine-induced acute anemia. Blood cross-transfusion and splenectomy experiments revealed that the shortened lifespan of erythrocytes was attributable to splenic impairment. Further analysis revealed increased erythrophagocytosis and decreased iron stores in the splenic red pulp, which was linked to the upregulation of Fcγ receptors and iron-recycling genes in neudesin-deficient macrophages. In vitro analysis confirmed that neudesin suppressed erythrophagocytosis and expression of Fcγ receptors through ERK1/2 activation in heme-stimulated macrophages. Finally, we observed that 24-week-old neudesin knockout mice exhibited severe symptoms of anemia. Collectively, our results suggest that neudesin regulates the function of red pulp macrophages and contributes to erythrocyte and iron homeostasis.


Assuntos
Anemia , Ferro , Animais , Camundongos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Fagocitose/fisiologia , Receptores de IgG/metabolismo , Baço/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo
8.
Cell Rep ; 43(1): 113621, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165802

RESUMO

Cell corpse removal is a critical component of both development and homeostasis throughout the animal kingdom. Extensive research has revealed many of the mechanisms involved in corpse removal, typically involving engulfment and digestion by another cell; however, the dynamics of cell corpse clearance in adult tissues remain unclear. Here, we track cell death in the adult planarian Schmidtea mediterranea and find that, following light-induced cell death, pigment cell corpses transit to the gut and are excreted from the animal. Gut phagocytes, previously only known to phagocytose food, are required for pigment cells to enter the gut lumen. Finally, we show that the planarian ortholog of ced-12/engulfment and cell motility (ELMO) is required for corpse phagocytosis and removal through the gut. In total, we present a mechanism of cell clearance in an adult organism involving transit of dead cells to the gut, transport into the gut by phagocytes, and physical excretion of debris.


Assuntos
Proteínas de Caenorhabditis elegans , Planárias , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transdução de Sinais/fisiologia , Apoptose/fisiologia , Planárias/metabolismo , Fagocitose/fisiologia , Cadáver
9.
Cytometry A ; 105(2): 81-87, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38179854

RESUMO

This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. For panel design, we ensured that the commonly available fluorophores FITC/AF488, PE, and APC were assigned to the intracellular subset marker Olfactomedin 4, the maturity and activation marker CD10, and whole blood subset marker CD177, respectively. These markers can be easily replaced without affecting the core identification of neutrophils, enabling antibodies to new neutrophil antigens of interest or for fluorescent substrates to assess different neutrophil functions to be easily explored. Panel optimization was performed on whole blood and purified neutrophils. We demonstrate applications on clinical samples (whole blood and saliva) and experimental endpoints (purified neutrophils stimulated through an in vitro transmigration assay). We hope that providing a uniform platform to analyze neutrophil plasticity in various sample types will facilitate the future understanding of neutrophil subsets in health and disease.


Assuntos
Neutrófilos , Fagocitose , Humanos , Citometria de Fluxo , Fagocitose/fisiologia , Antígenos , Anticorpos , Imunofluorescência
10.
Nat Rev Immunol ; 24(2): 91-102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37604896

RESUMO

Cells can die as a consequence of being phagocytosed by other cells - a form of cell death that has been called phagotrophy, cell cannibalism, programmed cell removal and primary phagocytosis. However, these are all different manifestations of cell death by phagocytosis (termed 'phagoptosis' for short). The engulfed cells die as a result of cytotoxic oxidants, peptides and degradative enzymes within acidic phagolysosomes. Cell death by phagocytosis was discovered by Metchnikov in the 1880s, but was neglected until recently. It is now known to contribute to developmental cell death in nematodes, Drosophila and mammals, and is central to innate and adaptive immunity against pathogens. Cell death by phagocytosis mediates physiological turnover of erythrocytes and other leucocytes, making it the most abundant form of cell death in the mammalian body. Immunity against cancer is also partly mediated by macrophage phagocytosis of cancer cells, but cancer cells can also phagocytose host cells and other cancer cells in order to survive. Recent evidence indicates neurodegeneration and other neuropathologies can be mediated by microglial phagocytosis of stressed neurons. Thus, despite cell death by phagocytosis being poorly recognized, it is one of the oldest, commonest and most important forms of cell death.


Assuntos
Microglia , Fagocitose , Animais , Humanos , Morte Celular/fisiologia , Fagocitose/fisiologia , Microglia/metabolismo , Macrófagos , Neurônios , Mamíferos
11.
Mol Biol Cell ; 35(3): ar26, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117588

RESUMO

Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.


Assuntos
Actinas , Proteínas do Citoesqueleto , Fagocitose , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas do Citoesqueleto/metabolismo
12.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069304

RESUMO

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Assuntos
Metaloproteinase 12 da Matriz , Fagocitose , Humanos , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Fagocitose/fisiologia , Macrófagos/metabolismo , Inflamação/metabolismo , Regulação da Expressão Gênica , Apoptose/fisiologia
13.
Subcell Biochem ; 106: 77-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159224

RESUMO

Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.


Assuntos
Fagocitose , Viroses , Animais , Camundongos , Fagocitose/fisiologia , Fagócitos/fisiologia , Imunidade Inata , Apoptose/fisiologia , Antivirais
14.
J Neuroinflammation ; 20(1): 256, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941008

RESUMO

BACKGROUND: Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS: We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS: Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS: Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.


Assuntos
Orientação de Axônios , Lesões Encefálicas , Camundongos , Animais , c-Mer Tirosina Quinase/metabolismo , Apoptose , Fagocitose/fisiologia , Camundongos Knockout , RNA Mensageiro , Fator de Transcrição STAT6/metabolismo
15.
Cell Rep ; 42(11): 113423, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952151

RESUMO

Microglia are the primary phagocytes in the central nervous system and clear dead cells generated during development or disease. The phagocytic process shapes the microglia phenotype, which affects the local environment. A unique population of microglia resides in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence the neurogenic niche is not well understood. Here, we demonstrate that phagocytosis contributes to a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering a neuroinflammatory microglia phenotype that resembles dysfunctional microglia in neurodegeneration and aging and that reduces neural precursor proliferation via elevated interleukin-1ß signaling; interleukin-1 receptor inhibition rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to the maintenance of a pro-neurogenic phenotype in the developing V-SVZ.


Assuntos
Ventrículos Laterais , Microglia , Animais , Camundongos , Microglia/fisiologia , Fagócitos , Fagocitose/fisiologia , Transdução de Sinais
16.
Semin Immunol ; 70: 101849, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939552

RESUMO

Neutrophils are among the most abundant immune cells, representing about 50%- 70% of all circulating leukocytes in humans. Neutrophils rapidly infiltrate inflamed tissues and play an essential role in host defense against infections. They exert microbicidal activity through a variety of specialized effector mechanisms, including phagocytosis, production of reactive oxygen species, degranulation and release of secretory vesicles containing broad-spectrum antimicrobial factors. In addition to their homeostatic turnover by apoptosis, recent studies have revealed the mechanisms by which neutrophils undergo various forms of regulated cell death. In this review, we will discuss the different modes of regulated cell death that have been described in neutrophils, with a particular emphasis on the current understanding of neutrophil pyroptosis and its role in infections and autoinflammation.


Assuntos
Neutrófilos , Piroptose , Humanos , Fagocitose/fisiologia , Apoptose/fisiologia
17.
PLoS Biol ; 21(11): e3002359, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934726

RESUMO

Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure down-regulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial Draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and Draper expression. Significantly, we show that genetically stimulating phosphoinositide 3-kinase (Pi3k), a downstream effector of insulin receptor (IR) signaling, rescues high-sugar diet (HSD)-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Insulinas , Doenças Neurodegenerativas , Animais , Drosophila/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fagocitose/fisiologia , Neuroglia/metabolismo , Encéfalo/metabolismo , Dieta , Doenças Neurodegenerativas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Insulinas/metabolismo
18.
Biomolecules ; 13(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37892170

RESUMO

The ß2 integrin CD11b/CD18, also known as complement receptor 3 (CR3), and the moonlighting protein aminopeptidase N (CD13), are two myeloid immune receptors with overlapping activities: adhesion, migration, phagocytosis of opsonized particles, and respiratory burst induction. Given their common functions, shared physical location, and the fact that some receptors can activate a selection of integrins, we hypothesized that CD13 could induce CR3 activation through an inside-out signaling mechanism and possibly have an influence on its membrane expression. We revealed that crosslinking CD13 on the surface of human macrophages not only activates CR3 but also influences its membrane expression. Both phenomena are affected by inhibitors of Src, PLCγ, Syk, and actin polymerization. Additionally, after only 10 min at 37 °C, cells with crosslinked CD13 start secreting pro-inflammatory cytokines like interferons type 1 and 2, IL-12p70, and IL-17a. We integrated our data with a bioinformatic analysis to confirm the connection between these receptors and to suggest the signaling cascade linking them. Our findings expand the list of features of CD13 by adding the activation of a different receptor via inside-out signaling. This opens the possibility of studying the joint contribution of CD13 and CR3 in contexts where either receptor has a recognized role, such as the progression of some leukemias.


Assuntos
Antígenos CD13 , Antígenos CD18 , Integrinas , Humanos , Antígenos CD18/metabolismo , Antígeno de Macrófago 1/metabolismo , Fagocitose/fisiologia
19.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794132

RESUMO

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Assuntos
Fagocitose , Fagossomos , Fagossomos/metabolismo , Fagocitose/fisiologia , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
20.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834319

RESUMO

Cells are the smallest units that make up living organisms, which constantly undergo the processes of proliferation, differentiation, senescence and death. Dead cells need to be removed in time to maintain the homeostasis of the organism and keep it healthy. This process is called efferocytosis. If the process fails, this may cause different types of diseases. More and more evidence suggests that a faulty efferocytosis process is closely related to the pathological processes of respiratory diseases. In this review, we will first introduce the process and the related mechanisms of efferocytosis of the macrophage. Secondly, we will propose some methods that can regulate the function of efferocytosis at different stages of the process. Next, we will discuss the role of efferocytosis in different lung diseases and the related treatment approaches. Finally, we will summarize the drugs that have been applied in clinical practice that can act upon efferocytosis, in order to provide new ideas for the treatment of lung diseases.


Assuntos
Pneumopatias , Transtornos Respiratórios , Humanos , Apoptose/fisiologia , Fagocitose/fisiologia , Macrófagos , Fagócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...